COMMON NAME
Grape Pomace Extract
TOP BENEFITS OF BIOVIN®
Supports healthy aging*
Supports exercise performance*
Supports metabolic heath and healthy weight*
Supports mitochondrial health*
Supports cellular responses and antioxidant defenses*
Support cardiovascular function*
Supports brain function*
Supports healthy gut microbiota*
WHAT IS BIOVIN®?
BioVin® is made from the juice, seeds, and skins of French red grapes. It provides a full spectrum of grape’s health-promoting compounds. Grape skins and seeds contain small amount of trans-resveratrol. This compound has been the subject of hundreds or pre-clinical and clinical research studies. While trans-resveratrol has received a great deal of research attention, grapes are more than one compound: They contain resveratrol derivatives (e.g., viniferins, polydatin) and polyphenol compounds (e.g., oligomeric proanthocyanidins, quercetin, gallic acids, catechins). These compounds have synergies with trans-resveratrol. We think it makes sense to use a full spectrum extract to capture these synergies.
NEUROHACKER’S BIOVIN® SOURCING
BioVin® is a full spectrum French red grape extract made from grape juice, seeds, and skins of Vitis vinifera, whole red grapes.
Standardized to contain 5% trans-resveratrol and not less than 40% grape oligomeric proanthocyanidins.
BioVin® is from grapes responsibly grown and harvested in the Rhone Valley region of France.
Non-GMO, Vegan
BioVin® Advanced is a registered trademark of Cyvex Nutrition, Inc dba Bioriginal.
BIOVIN® DOSING PRINCIPLES AND RATIONALE
When thinking about the dose of BioVin® there’s a few things to keep in mind. This grape extract has been standardized to contain 5% trans-resveratrol and not less than 40% oligomeric proanthocyanidins. The extract also has other compounds that naturally occur in grape juice, seeds, and skin. While trans-resveratrol is one of the reasons we use this extract, it’s the synergy of all of grape’s phytonutrients that is the story. Focusing only on the trans-resveratrol content misses the big picture. That said, we don’t view trans-resveratrol as a more is better compound. It might be better thought of as a hormetic substance; something that in low to moderate amounts helps promote an adaptive response to stress, but which doesn’t work as well at very high doses. Our goal with trans-resveratrol, as with all many ingredient choices, is to select the lowest dose needed to produce desired benefits, especially in the context of other ingredient synergies. Studies have used resveratrol alone in doses as low as 10 mg … and doses of several grams. When used as part of a grape extract, the amount of resveratrol in the study has typically been less than 10 mg. When we choose our BioVin® dose the goal was to be at or above the low-dose resveratrol threshold, which we think of as being 10 mg. This allows us to also provide a meaningful dose of 80 mg per serving of oligomeric proanthocyanidins.
BIOVIN® KEY MECHANISMS
Grape proanthocyanidins
Mitochondrial biogenesis
Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) [1–5]
Upregulates nuclear transcription factors of mitochondrial biogenesis (nuclear respiratory factor-1 [NRF1], NRF2, mitochondrial transcription factor A [TFAM] [2,3,6–8]
Mitochondrial structure and function
Supports mitochondrial DNA (mtDNA) [3]
Protects mitochondrial structure [4]
Protects from complex I-V inhibition [9–14]
Supports the activities of TCA cycle enzymes [13]
Supports β-oxidation [11]Upregulates the NAD+ pool [15]
Signaling pathways
Upregulates AMPK signaling [3–5,7,11,16–18]
Antioxidant defenses
Downregulates reactive oxygen species (ROS) levels and oxidative stress [4,9,10,12,14,17]
Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [2–5,7,9,17]
Cellular signaling
Downregulates the expression of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], nuclear factor kappa B [NF-κB]) [7,13,19]
Metabolism
Supports healthy insulin sensitivity [17–20]Upregulates the insulin signaling pathway [17]
Upregulates the glucose transporter GLUT4 [17,21]
Body weight
Downregulates fat accumulation and blood/liver lipid levels [1,9–11,17,19,20]
Exercise performance
Supports endurance performance [22]
Upregulates muscle mass [23]
Cognitive function
Supports attention [24]
Supports memory [24]
Supports working memory [24]
Supports learning and memory (in animals) [25–32]
Mood and stress response
Supports positive affect [23,24,26,33]
Supports a calm mood [23–27,29,34,35]
Downregulates stress hormone levels [26,29,34]
Brain function
Supports sleep [23]
Supports brain metabolism [23]
Upregulates BDNF levels [26,27,30,33,36,37]
Supports long-term potentiation [25,28]
Supports synaptic plasticity [30,38]
Downregulates acetylcholinesterase (AChE) activity [30]
Upregulates choline acetyltransferase (ChAT) activity [30]
Neuroprotection
Protects from glutamate toxicity [39]
Protects neuronal mitochondrial function [2,29]
Upregulates brain Nrf2 levels [37]
Downregulates brain oxidative stress [25,27,29,31,34]
Protects from ischemic damage [28]
Protects against neurotoxic agents [31,32]
Regulates brain cytokine signaling [31]
Cardiovascular function
Supports healthy blood pressure [23,40]
Supports vasodilation [40]
Supports endothelial progenitor cells [41]
Gut microbiota
Regulates the composition of the gut microbiota [19,42–46]
Supports gut barrier function [46–48]
Regulates gut oxidative stress [48,49]
Skin health
Supports uniform skin pigmentation [50–52]
Protects from UV-induced skin structural changes [53]
Supports and protects dermal ECM structure [53,54]
Supports skin Nrf2 signaling and phase II defenses [53]
Modulates immune/cytokine signaling [55]
Healthy aging and longevity
Upregulates SIRT1 [2–5,15]Downregulates mTOR signaling [16]Upregulates UCP1 [1]Extends lifespan (Drosophila melanogaster) [14]
Other
Protects liver structure and function [13]
Modulates the gut microbiota composition [19]
Modulates circadian rhythms [56,57]
Synergies
Gynostemma pentaphyllum (in improving insulin sensitivity) [20]
With pomegranate fruit extract in supporting skin health [58]
Resveratrol
Mitochondrial biogenesis
Upregulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) [59–66]
Upregulates nuclear transcriptional factors of mitochondrial biogenesis (nuclear respiratory factor-1 [NRF1], NRF2, mitochondrial transcription factor A [TFAM]) [60,63,65,67]
Mitochondrial structure and function
Upregulates mitochondrial size and number [60,62]
Upregulates inner mitochondrial membrane folding (cristae) [60]
Upregulates mitochondrial DNA (mtDNA) [60,63,64]
Supports mitochondrial membrane potential [63]Upregulates citrate synthase [59,60]
Upregulates ATP production [63,65]Upregulates NAD+ pool [63,64,68]
Upregulates components of the electron transport chain - complex I-V [63]
Supports β-oxidation [60,66,68,69]
Signaling pathways
Upregulates AMPK signaling [59,62–66,68,70,71]
Upregulates liver kinase B1 (LKB1) signaling [63,65]
Upregulates peroxisome proliferator-activated receptor alpha (PPARα) [60]
Downregulates peroxisome proliferator-activated receptor gamma (PPARγ) [66]
Supports estrogen receptor signaling [60,64,72,73]
Upregulates forkhead transcription factor O 1 (FOXO1) [66]
Inhibits phosphodiesterase (PDE) 1 and 4 and activates adenylate cyclase - upregulates cAMP levels [68,74]
Antioxidant defenses
Downregulates reactive oxygen species (ROS) levels and oxidative stress [64,66–68,75–78]
Upregulates antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [79,80]
Downregulates pro-oxidant enzymes (NADPH oxidase) [79,80]
Insulin signaling
Supports healthy insulin sensitivity [59,60,62,64,71,75,81]
Body weight
Downregulates fat accumulation and blood/liver lipid levels [59,60,66]
Supports thermogenesis [60]Upregulates adiponectin levels [66]
Exercise performance
Supports endurance performance [60]
Supports muscle structure and function [63,82]
Supports glucose uptake in muscles [83]
Cardiovascular function
Supports healthy vascular function [79–81,84]
Protects cardiac function [83]
Brain function
Supports cerebral blood flow [85–88]
Neuroprotective against neurotoxic agents [76,77,89]
Supports neural stem cells [90,91]
Supports neurogenesis [90–92]
Upregulates BDNF levels [92–103]
Regulates cytokine signaling [93,95,97]
Regulates HPA axis signaling [98,103]
Neuroprotective effects [95,103–105]
Cognitive function
Supports executive function [86,106]
Supports learning and memory (animals) [99,100,102,107]
Gut microbiota
Regulates the composition of the gut microbiota [108–114]
Regulates gut microbial metabolism [111]
Modulates gut microbial gene expression [111]
Supports gut barrier function [111]
Regulates gut cytokine signaling [114]
Skin health
Supports uniform skin pigmentation [115–117]
Supports and protects dermal ECM structure [53,118,119]
Supports skin antioxidant defenses [118–121]
Supports skin Nrf2 signaling and phase II defenses [53,120,122] [53]
Modulates immune/cytokine signaling [118,119,123]
Modulates skin degenerative signaling pathways (AP-1 and NF-κB) [123–127]
Protects from UV-induced skin structural changes [53]
Protects from UV-induced damage, ROS production and oxidative stress [128–130]
Protects from particulate matter (PM, air pollution)-induced skin damage [127,131,132]
Protects from cigarette smoke-induced damage [133,134]
Upregulates SIRT1 expression in the skin [118,119]
Downregulates aging biomarkers S100 A8 and S100 A9 in the skin [118,119]
Modulates skin autophagy [135]
Healthy aging and longevity
Supports stem cells [136–148]
Supports telomerase activity [136–138,149,150]
Downregulates cell senescence [121,137,138,143,150]
Upregulates SIRT1 [59,61,63,66,67,70,151,152] [118,119]
Upregulates mitochondrial uncoupling proteins UCP1, UCP2, and UCP3 [60,64]
Upregulates Klotho [67,152]
Downregulates mTOR signaling [62]
Delays age-related physiological changes [83]Extends lifespan (mice on high-calorie diet, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae) [62,84,151,153,154]
Circadian rhythms
Modulates circadian rhythms [155–158]
Regulates clock gene expression [155,158]
Synergies
Apigenin - resveratrol is an apigenin bioenhancer [159]
Piperine as a bioenhancer [160–164] and for cognitive function [165]
Hawthorn for heart function support [166]
Inositol for metabolic health [167]
REFERENCES
[1]C. Rodriguez Lanzi, D.J. Perdicaro, M.S. Landa, A. Fontana, A. Antoniolli, R.M. Miatello, P.I. Oteiza, M.A. Vazquez Prieto, J. Nutr. Biochem. 56 (2018) 224–233.
[2]H. Asseburg, C. Schäfer, M. Müller, S. Hagl, M. Pohland, D. Berressem, M. Borchiellini, C. Plank, G.P. Eckert, Neuromolecular Med. 18 (2016) 378–395.
[3]L. Bao, X. Cai, X. Dai, Y. Ding, Y. Jiang, Y. Li, Z. Zhang, Y. Li, Food Funct. 5 (2014) 1872–1880.
[4]X. Cai, L. Bao, J. Ren, Y. Li, Z. Zhang, Food Funct. 7 (2016) 805–815.
[5]L. Bao, X. Cai, Z. Zhang, Y. Li, Br. J. Nutr. 113 (2015) 35–44.
[6]I. Pokkunuri, Q. Ali, M. Asghar, Oxid. Med. Cell. Longev. 2016 (2016) 6135319.
[7]J. Lu, H. Jiang, B. Liu, R. Baiyun, S. Li, Y. Lv, D. Li, S. Qiao, X. Tan, Z. Zhang, Food Chem. Toxicol. 116 (2018) 59–69.
[8]S.G. Li, Y.S. Ding, Q. Niu, S.Z. Xu, L.J. Pang, R.L. Ma, M.X. Jing, G.L. Feng, J.M. Liu, S.X. Guo, Biomed. Environ. Sci. 28 (2015) 272–280.
[9]M. El Ayed, S. Kadri, M. Mabrouk, E. Aouani, S. Elkahoui, Lipids Health Dis. 17 (2018) 109.
[10]D. Leonetti, R. Soleti, N. Clere, L. Vergori, C. Jacques, L. Duluc, C. Dourguia, M.C. Martínez, R. Andriantsitohaina, Front. Pharmacol. 9 (2018) 406.
[11]M. Yin, P. Zhang, F. Yu, Z. Zhang, Q. Cai, W. Lu, B. Li, W. Qin, M. Cheng, H. Wang, H. Gao, Mol. Med. Rep. 16 (2017) 2844–2850.
[12]N.F.F. de Sales, L. Silva da Costa, T.I.A. Carneiro, D.A. Minuzzo, F.L. Oliveira, L.M.C. Cabral, A.G. Torres, T. El-Bacha, Molecules 23 (2018).
[13]S. Miltonprabu, Nazimabashir, V. Manoharan, Toxicol Rep 3 (2016) 63–77.
[14]J. Long, H. Gao, L. Sun, J. Liu, X. Zhao-Wilson, Rejuvenation Res. 12 (2009) 321–331.
[15]G. Aragonès, M. Suárez, A. Ardid-Ruiz, M. Vinaixa, M.A. Rodríguez, X. Correig, L. Arola, C. Bladé, Sci. Rep. 6 (2016) 24977.
[16]L. Castillo-Pichardo, S.F. Dharmawardhane, Nutr. Cancer 64 (2012) 1058–1069.
[17]G.F. da Costa, I.B. Santos, G.F. de Bem, V.S.C. Cordeiro, C.A. da Costa, L.C.R.M. de Carvalho, D.T. Ognibene, A.C. Resende, R.S. de Moura, Phytother. Res. 31 (2017) 1621–1632.
[18]E. Casanova, L. Baselga-Escudero, A. Ribas-Latre, L. Cedó, A. Arola-Arnal, M. Pinent, C. Bladé, L. Arola, M.J. Salvadó, J. Nutr. Biochem. 25 (2014) 1003–1010.
[19]W. Liu, S. Zhao, J. Wang, J. Shi, Y. Sun, W. Wang, G. Ning, J. Hong, R. Liu, Mol. Nutr. Food Res. 61 (2017).
[20]H.-J. Zhang, B.-P. Ji, G. Chen, F. Zhou, Y.-C. Luo, H.-Q. Yu, F.-Y. Gao, Z.-P. Zhang, H.-Y. Li, J. Food Sci. 74 (2009) H1–7.
[21]M. Aoun, F. Michel, G. Fouret, A. Schlernitzauer, V. Ollendorff, C. Wrutniak-Cabello, J.-P. Cristol, M.-A. Carbonneau, C. Coudray, C. Feillet-Coudray, Br. J. Nutr. 106 (2011) 491–501.
[22]L.T. Toscano, R.L. Tavares, L.T. Toscano, C.S.O. da Silva, A.E.M. de Almeida, A.C.T. Biasoto, M. da C.R. Gonçalves, A.S. Silva, Appl. Physiol. Nutr. Metab. 40 (2015) 899–906.
[23]M. Terauchi, N. Horiguchi, A. Kajiyama, M. Akiyoshi, Y. Owa, K. Kato, T. Kubota, Menopause 21 (2014) 990–996.
[24]G. Calapai, F. Bonina, A. Bonina, L. Rizza, C. Mannucci, V. Arcoraci, G. Laganà, A. Alibrandi, C. Pollicino, S. Inferrera, U. Alecci, Front. Pharmacol. 8 (2017) 776.
[25]G. Patki, F.H. Allam, F. Atrooz, A.T. Dao, N. Solanki, G. Chugh, M. Asghar, F. Jafri, R. Bohat, K.A. Alkadhi, S. Salim, PLoS One 8 (2013) e74522.
[26]N. Solanki, I. Alkadhi, F. Atrooz, G. Patki, S. Salim, Nutr. Res. 35 (2015) 65–75.
[27]F. Allam, A.T. Dao, G. Chugh, R. Bohat, F. Jafri, G. Patki, C. Mowrey, M. Asghar, K.A. Alkadhi, S. Salim, J. Nutr. 143 (2013) 835–842.
[28]A. Sarkaki, M. Rafieirad, S.E. Hossini, Y. Farbood, F. Motamedi, S.M.T. Mansouri, B. Naghizadeh, Iran. J. Basic Med. Sci. 16 (2013) 1004–1010.
[29]N. Solanki, A. Salvi, G. Patki, S. Salim, Int. J. Neuropsychopharmacol. 20 (2017) 550–561.
[30]L. Ma, H. Xiao, J. Wen, Z. Liu, Y. He, F. Yuan, Lipids Health Dis. 17 (2018) 152.
[31]I.H. Borai, M.K. Ezz, M.Z. Rizk, H.F. Aly, M. El-Sherbiny, A.A. Matloub, G.I. Fouad, Biomed. Pharmacother. 93 (2017) 837–851.
[32]D. Rapaka, V.R. Bitra, T.C. Vishala, A. Akula, J. Ayurveda Integr. Med. 10 (2019) 241–247.
[33]C. Jiang, E. Sakakibara, W.-J. Lin, J. Wang, G.M. Pasinetti, S.R. Salton, Ann. N. Y. Acad. Sci. 1455 (2019) 196–205.
[34]G. Patki, Q. Ali, I. Pokkunuri, M. Asghar, S. Salim, Nutr. Res. 35 (2015) 504–511.
[35]Z. Alrefaie, Int. J. Vitam. Nutr. Res. 85 (2015) 282–291.
[36]C. Dani, A.C. Andreazza, C.A. Gonçalves, F. Kapizinski, J.A.P. Henriques, M. Salvador, An. Acad. Bras. Cienc. 89 (2017) 155–161.
[37]H. Liao, L.-M. Chou, Y.-W. Chien, C.-H. Wu, J.-S. Chang, C.-I. Lin, S.-H. Lin, J. Nutr. Biochem. 43 (2017) 132–140.
[38]J. Wang, C. Tang, M.G. Ferruzzi, B. Gong, B.J. Song, E.M. Janle, T.-Y. Chen, B. Cooper, M. Varghese, A. Cheng, D. Freire, A. Bilski, J. Roman, T. Nguyen, L. Ho, S.T. Talcott, J.E. Simon, Q. Wu, G.M. Pasinetti, Mol. Nutr. Food Res. 57 (2013) 2091–2102.
[39]K. Narita, M. Hisamoto, T. Okuda, S. Takeda, PLoS One 6 (2011) e14575.
[40]J.-K. Kim, K.-A. Kim, H.-M. Choi, S.-K. Park, C.L. Stebbins, J. Med. Food 21 (2018) 445–453.
[41]F. Felice, Y. Zambito, G. Di Colo, C. D’Onofrio, C. Fausto, A. Balbarini, R. Di Stefano, Eur. J. Pharm. Biopharm. 80 (2012) 176–184.
[42]V. Nash, C.S. Ranadheera, E.N. Georgousopoulou, D.D. Mellor, D.B. Panagiotakos, A.J. McKune, J. Kellett, N. Naumovski, Food Res. Int. 113 (2018) 277–287.
[43]S. Chacar, M. Tarighi, N. Fares, J.-F. Faivre, N. Louka, R.G. Maroun, Antioxidants (Basel) 7 (2018).
[44]À. Casanova-Martí, J. Serrano, K.J. Portune, Y. Sanz, M.T. Blay, X. Terra, A. Ardévol, M. Pinent, Food Funct. 9 (2018) 1672–1682.
[45]S. Chacar, T. Itani, J. Hajal, Y. Saliba, N. Louka, J.-F. Faivre, R. Maroun, N. Fares, J. Food Sci. 83 (2018) 246–251.
[46]M. Van Hul, L. Geurts, H. Plovier, C. Druart, A. Everard, M. Ståhlman, M. Rhimi, K. Chira, P.-L. Teissedre, N.M. Delzenne, E. Maguin, A. Guilbot, A. Brochot, P. Gérard, F. Bäckhed, P.D. Cani, Am. J. Physiol. Endocrinol. Metab. 314 (2018) E334–E352.
[47]K. Gil-Cardoso, I. Ginés, M. Pinent, A. Ardévol, M. Blay, X. Terra, J. Nutr. Biochem. 62 (2018) 35–42.
[48]K. Gil-Cardoso, I. Ginés, M. Pinent, A. Ardévol, L. Arola, M. Blay, X. Terra, Mol. Nutr. Food Res. 61 (2017).
[49]P. Kuhn, H.M. Kalariya, A. Poulev, D.M. Ribnicky, A. Jaja-Chimedza, D.E. Roopchand, I. Raskin, PLoS One 13 (2018) e0198716.
[50]J. Yamakoshi, A. Sano, S. Tokutake, M. Saito, M. Kikuchi, Y. Kubota, Y. Kawachi, F. Otsuka, Phytother. Res. 18 (2004) 895–899.
[51]J. Yamakoshi, F. Otsuka, A. Sano, S. Tokutake, M. Saito, M. Kikuchi, Y. Kubota, Pigment Cell Res. 16 (2003) 629–638.
[52]Y.-S. Lin, H.-J. Chen, J.-P. Huang, P.-C. Lee, C.-R. Tsai, T.-F. Hsu, W.-Y. Huang, Biomed Res. Int. 2017 (2017) 5232680.
[53]J. Kim, J. Oh, J.N. Averilla, H.J. Kim, J.-S. Kim, J.-S. Kim, J. Food Sci. 84 (2019) 1600–1608.
[54]J. Wittenauer, S. Mäckle, D. Sußmann, U. Schweiggert-Weisz, R. Carle, Fitoterapia 101 (2015) 179–187.
[55]H.P. Decean, I.C. Brie, C.B. Tatomir, M. Perde-Schrepler, E. Fischer-Fodor, P. Virag, J. Environ. Pathol. Toxicol. Oncol. 37 (2018) 261–272.
[56]A. Ribas-Latre, L. Baselga-Escudero, E. Casanova, A. Arola-Arnal, M.-J. Salvadó, C. Bladé, L. Arola, Sci. Rep. 5 (2015) 10954.
[57]A. Ribas-Latre, J.M. Del Bas, L. Baselga-Escudero, E. Casanova, A. Arola-Arnal, M.-J. Salvadó, L. Arola, C. Bladé, Mol. Nutr. Food Res. 59 (2015) 865–878.
[58]D. Buonocore, A. Lazzeretti, P. Tocabens, V. Nobile, E. Cestone, G. Santin, M.G. Bottone, F. Marzatico, Clin. Cosmet. Investig. Dermatol. 5 (2012) 159–165.
[59]S. Timmers, E. Konings, L. Bilet, R.H. Houtkooper, T. van de Weijer, G.H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, E. Moonen-Kornips, M.K.C. Hesselink, I. Kunz, V.B. Schrauwen-Hinderling, E. Blaak, J. Auwerx, P. Schrauwen, Cell Metab. 14 (2011) 612–622.
[60]M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Cell 127 (2006) 1109–1122.
[61]T.D. Scribbans, J.K. Ma, B.A. Edgett, K.A. Vorobej, A.S. Mitchell, J.G.E. Zelt, C.A. Simpson, J. Quadrilatero, B.J. Gurd, Appl. Physiol. Nutr. Metab. 39 (2014) 1305–1313.
[62]J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Nature 444 (2006) 337–342.
[63]N.L. Price, A.P. Gomes, A.J.Y. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, B.P. Hubbard, A.T. Varela, J.G. Davis, B. Varamini, A. Hafner, R. Moaddel, A.P. Rolo, R. Coppari, C.M. Palmeira, R. de Cabo, J.A. Baur, D.A. Sinclair, Cell Metab. 15 (2012) 675–690.
[64]J.-H. Um, S.-J. Park, H. Kang, S. Yang, M. Foretz, M.W. McBurney, M.K. Kim, B. Viollet, J.H. Chung, Diabetes 59 (2010) 554–563.
[65]B. Dasgupta, J. Milbrandt, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 7217–7222.
[66]J.M. Ajmo, X. Liang, C.Q. Rogers, B. Pennock, M. You, Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008) G833–42.
[67]P. Zhang, Y. Li, Y. Du, G. Li, L. Wang, F. Zhou, Transplant. Proc. 48 (2016) 3378–3386.
[68]S.-J. Park, F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, A.L. Brown, M.K. Kim, M.A. Beaven, A.B. Burgin, V. Manganiello, J.H. Chung, Cell 148 (2012) 421–433.
[69]J. Most, S. Timmers, I. Warnke, J.W. Jocken, M. van Boekschoten, P. de Groot, I. Bendik, P. Schrauwen, G.H. Goossens, E.E. Blaak, Am. J. Clin. Nutr. 104 (2016) 215–227.
[70]K.P. Goh, H.Y. Lee, D.P. Lau, W. Supaat, Y.H. Chan, A.F.Y. Koh, Int. J. Sport Nutr. Exerc. Metab. 24 (2014) 2–13.
[71]C.E. Park, M.-J. Kim, J.H. Lee, B.-I. Min, H. Bae, W. Choe, S.-S. Kim, J. Ha, Exp. Mol. Med. 39 (2007) 222–229.
[72]B.D. Gehm, J.M. McAndrews, P.Y. Chien, J.L. Jameson, Proc. Natl. Acad. Sci. U. S. A. 94 (1997) 14138–14143.
[73]J.L. Bowers, V.V. Tyulmenkov, S.C. Jernigan, C.M. Klinge, Endocrinology 141 (2000) 3657–3667.
[74]A.M. El-Mowafy, M. Alkhalaf, Carcinogenesis 24 (2003) 869–873.
[75]P. Brasnyó, G.A. Molnár, M. Mohás, L. Markó, B. Laczy, J. Cseh, E. Mikolás, I.A. Szijártó, A. Mérei, R. Halmai, L.G. Mészáros, B. Sümegi, I. Wittmann, Br. J. Nutr. 106 (2011) 383–389.
[76]R. Moldzio, K. Radad, C. Krewenka, B. Kranner, J.C. Duvigneau, W.-D. Rausch, J. Neural Transm. 120 (2013) 1271–1280.
[77]Y.K. Gupta, S. Briyal, G. Chaudhary, Pharmacol. Biochem. Behav. 71 (2002) 245–249.
[78]S.S. Leonard, C. Xia, B.-H. Jiang, B. Stinefelt, H. Klandorf, G.K. Harris, X. Shi, Biochem. Biophys. Res. Commun. 309 (2003) 1017–1026.
[79]G. Spanier, H. Xu, N. Xia, S. Tobias, S. Deng, L. Wojnowski, U. Forstermann, H. Li, J. Physiol. Pharmacol. 60 Suppl 4 (2009) 111–116.
[80]N. Xia, A. Daiber, A. Habermeier, E.I. Closs, T. Thum, G. Spanier, Q. Lu, M. Oelze, M. Torzewski, K.J. Lackner, T. Münzel, U. Förstermann, H. Li, J. Pharmacol. Exp. Ther. 335 (2010) 149–154.
[81]J.P. Crandall, V. Oram, G. Trandafirescu, M. Reid, P. Kishore, M. Hawkins, H.W. Cohen, N. Barzilai, J. Gerontol. A Biol. Sci. Med. Sci. 67 (2012) 1307–1312.
[82]J.-P.K. Hyatt, L. Nguyen, A.E. Hall, A.M. Huber, J.C. Kocan, J.A. Mattison, R. de Cabo, J.R. LaRocque, R.J. Talmadge, Front. Physiol. 7 (2016) 77.
[83]J.L. Barger, T. Kayo, J.M. Vann, E.B. Arias, J. Wang, T.A. Hacker, Y. Wang, D. Raederstorff, J.D. Morrow, C. Leeuwenburgh, D.B. Allison, K.W. Saupe, G.D. Cartee, R. Weindruch, T.A. Prolla, PLoS One 3 (2008) e2264.
[84]K.J. Pearson, J.A. Baur, K.N. Lewis, L. Peshkin, N.L. Price, N. Labinskyy, W.R. Swindell, D. Kamara, R.K. Minor, E. Perez, H.A. Jamieson, Y. Zhang, S.R. Dunn, K. Sharma, N. Pleshko, L.A. Woollett, A. Csiszar, Y. Ikeno, D. Le Couteur, P.J. Elliott, K.G. Becker, P. Navas, D.K. Ingram, N.S. Wolf, Z. Ungvari, D.A. Sinclair, R. de Cabo, Cell Metab. 8 (2008) 157–168.
[85]D.O. Kennedy, E.L. Wightman, J.L. Reay, G. Lietz, E.J. Okello, A. Wilde, C.F. Haskell, Am. J. Clin. Nutr. 91 (2010) 1590–1597.
[86]R.H.X. Wong, D. Raederstorff, P.R.C. Howe, Nutrients 8 (2016).
[87]E.L. Wightman, C.F. Haskell-Ramsay, J.L. Reay, G. Williamson, T. Dew, W. Zhang, D.O. Kennedy, Br. J. Nutr. 114 (2015) 1427–1437.
[88]H.M. Evans, P.R.C. Howe, R.H.X. Wong, Nutrients 9 (2017).
[89]Q. Wang, S. Yu, A. Simonyi, G. Rottinghaus, G.Y. Sun, A.Y. Sun, Neurochem. Res. 29 (2004) 2105–2112.
[90]L. Xu, Y. Yang, L. Gao, J. Zhao, Y. Cai, J. Huang, S. Jing, X. Bao, Y. Wang, J. Gao, H. Xu, X. Fan, Biochim. Biophys. Acta 1852 (2015) 1298–1310.
[91]N.B. Bottari, M.R.C. Schetinger, M.M. Pillat, T.V. Palma, H. Ulrich, M.S. Alves, V.M. Morsch, C. Melazzo, L.D. de Barros, J.L. Garcia, A.S. Da Silva, Mol. Neurobiol. 56 (2019) 2328–2338.
[92]S. Madhyastha, S. Sekhar, G. Rao, Int. J. Dev. Neurosci. 31 (2013) 580–585.
[93]M. Wiciński, M. Socha, M. Walczak, E. Wódkiewicz, B. Malinowski, S. Rewerski, K. Górski, K. Pawlak-Osińska, Nutrients 10 (2018).
[94]M. Rahvar, M. Nikseresht, S.M. Shafiee, F. Naghibalhossaini, M. Rasti, M.R. Panjehshahin, A.A. Owji, Neurochem. Res. 36 (2011) 761–765.
[95]L. Ge, L. Liu, H. Liu, S. Liu, H. Xue, X. Wang, L. Yuan, Z. Wang, D. Liu, Eur. J. Pharmacol. 768 (2015) 49–57.
[96]G. Li, G. Wang, J. Shi, X. Xie, N. Fei, L. Chen, N. Liu, M. Yang, J. Pan, W. Huang, Y. Xu, Neuropharmacology 133 (2018) 181–188.
[97]X.-H. Yang, S.-Q. Song, Y. Xu, Neuropsychiatr. Dis. Treat. 13 (2017) 2727–2736.
[98]S.H. Ali, R.M. Madhana, A. K V., E.R. Kasala, L.N. Bodduluru, S. Pitta, J.R. Mahareddy, M. Lahkar, Steroids 101 (2015) 37–42.
[99]J.-F. Ge, Y.-Y. Xu, N. Li, Y. Zhang, G.-L. Qiu, C.-H. Chu, C.-Y. Wang, G. Qin, F.-H. Chen, Endocrine Journal 62 (2015) 927–938.
[100]Y.-N. Zhao, W.-F. Li, F. Li, Z. Zhang, Y.-D. Dai, A.-L. Xu, C. Qi, J.-M. Gao, J. Gao, Biochem. Biophys. Res. Commun. 435 (2013) 597–602.
[101]J. Song, S.Y. Cheon, W. Jung, W.T. Lee, J.E. Lee, Int. J. Mol. Sci. 15 (2014) 15512–15529.
[102]J. Shen, L. Xu, C. Qu, H. Sun, J. Zhang, Behav. Brain Res. 349 (2018) 1–7.
[103]C. Pang, L. Cao, F. Wu, L. Wang, G. Wang, Y. Yu, M. Zhang, L. Chen, W. Wang, W. Lv, L. Chen, J. Zhu, J. Pan, H. Zhang, Y. Xu, L. Ding, Neuropharmacology 97 (2015) 447–456.
[104]G. Wang, L. Chen, X. Pan, J. Chen, L. Wang, W. Wang, R. Cheng, F. Wu, X. Feng, Y. Yu, H.-T. Zhang, J.M. O’Donnell, Y. Xu, Oncotarget 7 (2016).
[105]Q. Zhang, X. Wang, X. Bai, Y. Xie, T. Zhang, S. Bo, X. Chen, Mol. Med. Rep. 16 (2017) 2095–2100.
[106]S.D. Anton, N. Ebner, J.M. Dzierzewski, Z.Z. Zlatar, M.J. Gurka, V.M. Dotson, J. Kirton, R.T. Mankowski, M. Marsiske, T.M. Manini, J. Altern. Complement. Med. 24 (2018) 725–732.
[107]Y. Yazir, T. Utkan, N. Gacar, F. Aricioglu, Physiol. Behav. 138 (2015) 297–304.
[108]Y.-L. Tain, W.-C. Lee, K.L.H. Wu, S. Leu, J.Y.H. Chan, Mol. Nutr. Food Res. (2018) e1800066.
[109]Y. Zheng, W. Wu, G. Hu, L. Qiu, S. Meng, C. Song, L. Fan, Z. Zhao, X. Bing, J. Chen, Fish Shellfish Immunol. 77 (2018) 200–207.
[110]L. Zhao, Q. Zhang, W. Ma, F. Tian, H. Shen, M. Zhou, Food Funct. 8 (2017) 4644–4656.
[111]J.K. Bird, D. Raederstorff, P. Weber, R.E. Steinert, Adv. Nutr. 8 (2017) 839–849.
[112]A.S. Korsholm, T.N. Kjær, M.J. Ornstrup, S.B. Pedersen, Int. J. Mol. Sci. 18 (2017).
[113]M.M. Sung, T.T. Kim, E. Denou, C.-L.M. Soltys, S.M. Hamza, N.J. Byrne, G. Masson, H. Park, D.S. Wishart, K.L. Madsen, J.D. Schertzer, J.R.B. Dyck, Diabetes 66 (2017) 418–425.
[114]M. Larrosa, M.J. Yañéz-Gascón, M.V. Selma, A. González-Sarrías, S. Toti, J.J. Cerón, F. Tomás-Barberán, P. Dolara, J.C. Espín, J. Agric. Food Chem. 57 (2009) 2211–2220.
[115]T.H. Lee, J.O. Seo, S.-H. Baek, S.Y. Kim, Biomol. Ther. 22 (2014) 35–40.
[116]Q. Liu, C. Kim, Y.H. Jo, S.B. Kim, B.Y. Hwang, M.K. Lee, Molecules 20 (2015) 16933–16945.
[117]R.A. Newton, A.L. Cook, D.W. Roberts, J.H. Leonard, R.A. Sturm, J. Invest. Dermatol. 127 (2007) 2216–2227.
[118]E.D. Lephart, M.B. Andrus, Exp. Biol. Med. 242 (2017) 1482–1489.
[119]E.D. Lephart, J.M. Sommerfeldt, M.B. Andrus, J. Funct. Foods 10 (2014) 377–384.
[120]J. Soeur, J. Eilstein, G. Léreaux, C. Jones, L. Marrot, Free Radic. Biol. Med. 78 (2015) 213–223.
[121]Y. Ido, A. Duranton, F. Lan, K.A. Weikel, L. Breton, N.B. Ruderman, PLoS One 10 (2015) e0115341.
[123]X. Zhu, Q. Liu, M. Wang, M. Liang, X. Yang, X. Xu, H. Zou, J. Qiu, PLoS One 6 (2011) e27081.
[124]V.M. Adhami, F. Afaq, N. Ahmad, Neoplasia 5 (2003) 74–82.
[125]S. Pastore, D. Lulli, R. Maurelli, E. Dellambra, C. De Luca, L.G. Korkina, PLoS One 8 (2013) e59632.
[126]J.K. Kundu, Y.-J. Surh, Mutat. Res. 555 (2004) 65–80.
[127]M.-H. Tsai, L.-F. Hsu, C.-W. Lee, Y.-C. Chiang, M.-H. Lee, J.-M. How, C.-M. Wu, C.-L. Huang, I.-T. Lee, Int. J. Biochem. Cell Biol. 88 (2017) 113–123.
[128]K. Park, J.-H. Lee, Oncol. Rep. 19 (2008) 413–417.
[129]F. Zhou, X. Huang, Y. Pan, D. Cao, C. Liu, Y. Liu, A. Chen, Biochem. Biophys. Res. Commun. 499 (2018) 662–668.
[130]S. Reagan-Shaw, F. Afaq, M.H. Aziz, N. Ahmad, Oncogene 23 (2004) 5151–5160.
[131]M.A. Choi, J.K. Seok, J.W. Lee, S.Y. Lee, Y.M. Kim, Y.C. Boo, J. Soc. Cosmet. Sci. Korea 44 (2018) 249–258.
[132]J.-W. Shin, H.-S. Lee, J.-I. Na, C.-H. Huh, K.-C. Park, H.-R. Choi, Int. J. Mol. Sci. 21 (2020).
[133]C. Sticozzi, G. Belmonte, F. Cervellati, X.M. Muresan, F. Pessina, Y. Lim, H.J. Forman, G. Valacchi, Free Radic. Biol. Med. 69 (2014) 50–57.
[134]C. Sticozzi, F. Cervellati, X.M. Muresan, C. Cervellati, G. Valacchi, Food Funct. 5 (2014) 2348–2356.
[135]D.K. Mostafa, S.I. Omar, A.A. Abdellatif, O.A. Sorour, O.A. Nayel, M.R.A. Al Obaidi, Curr. Mol. Pharmacol. (2020).
[136]V.P. Pearce, J. Sherrell, Z. Lou, L. Kopelovich, W.E. Wright, J.W. Shay, Oncogene 27 (2008) 2365–2374.
[137]L. Xia, X.X. Wang, X.S. Hu, X.G. Guo, Y.P. Shang, H.J. Chen, C.L. Zeng, F.R. Zhang, J.Z. Chen, Br. J. Pharmacol. 155 (2008) 387–394.
[138]X.-B. Wang, L. Zhu, J. Huang, Y.-G. Yin, X.-Q. Kong, Q.-F. Rong, A.-W. Shi, K.-J. Cao, Chin. Med. J. 124 (2011) 4310–4315.
[139]M.L. Balestrieri, C. Schiano, F. Felice, A. Casamassimi, A. Balestrieri, L. Milone, L. Servillo, C. Napoli, J. Biochem. 143 (2008) 179–186.
[140]L. Ling, S. Gu, Y. Cheng, Mol. Med. Rep. 15 (2017) 1188–1194.
[141]X.-H. Chen, Z.-G. Shi, H.-B. Lin, F. Wu, F. Zheng, C.-F. Wu, M.-W. Huang, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 6352–6359.
[142]H. Zhang, Z. Zhai, Y. Wang, J. Zhang, H. Wu, Y. Wang, C. Li, D. Li, L. Lu, X. Wang, J. Chang, Q. Hou, Z. Ju, D. Zhou, A. Meng, Free Radic. Biol. Med. 54 (2013) 40–50.
[143]Y.-J. Lv, Y. Yang, B.-D. Sui, C.-H. Hu, P. Zhao, L. Liao, J. Chen, L.-Q. Zhang, T.-T. Yang, S.-F. Zhang, Y. Jin, Theranostics 8 (2018) 2387–2406.
[144]H. Liu, S. Zhang, L. Zhao, Y. Zhang, Q. Li, X. Chai, Y. Zhang, Stem Cells Int. 2016 (2016) 2524092.
[145]I.I. Suvorova, A.R. Knyazeva, A.V. Petukhov, N.D. Aksenov, V.A. Pospelov, Cell Death Discov 5 (2019) 61.
[146]Y.-J. Wang, P. Zhao, B.-D. Sui, N. Liu, C.-H. Hu, J. Chen, C.-X. Zheng, A.-Q. Liu, K. Xuan, Y.-P. Pan, Y. Jin, Exp. Mol. Med. 50 (2018) 1–15.
[147]T.-S. Chen, C.-H. Kuo, C.H. Day, L.-F. Pan, R.-J. Chen, B.-C. Chen, V.V. Padma, Y.-M. Lin, C.-Y. Huang, J. Cell. Physiol. 234 (2019) 20443–20452.
[148]Z. Safaeinejad, M. Nabiuni, M. Peymani, K. Ghaedi, M.H. Nasr-Esfahani, H. Baharvand, Eur. J. Cell Biol. 96 (2017) 665–672.
[149]F. Uchiumi, T. Watanabe, S. Hasegawa, T. Hoshi, Y. Higami, S.-I. Tanuma, Curr. Aging Sci. 4 (2011) 1–7.
[150]J. Li, C.-X. Zhang, Y.-M. Liu, K.-L. Chen, G. Chen, Oncotarget 8 (2017) 65717–65729.
[151]K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer, D.A. Sinclair, Nature 425 (2003) 191–196.
[152]S.-C. Hsu, S.-M. Huang, A. Chen, C.-Y. Sun, S.-H. Lin, J.-S. Chen, S.-T. Liu, Y.-J. Hsu, Int. J. Biochem. Cell Biol. 53 (2014) 361–371.
[153]T.M. Bass, D. Weinkove, K. Houthoofd, D. Gems, L. Partridge, Mech. Ageing Dev. 128 (2007) 546–552.
[154]J.G. Wood, B. Rogina, S. Lavu, K. Howitz, S.L. Helfand, M. Tatar, D. Sinclair, Nature 430 (2004) 686–689.
[155]J. Miranda, M.P. Portillo, J.A. Madrid, N. Arias, M.T. Macarulla, M. Garaulet, Br. J. Nutr. 110 (2013) 1421–1428.
[156]F. Pifferi, A. Dal-Pan, S. Languille, F. Aujard, Oxid. Med. Cell. Longev. 2013 (2013) 187301.
[157]J.R. Leheste, G. Torres, Front. Mol. Neurosci. 8 (2015) 61.
[158]L. Sun, Y. Wang, Y. Song, X.-R. Cheng, S. Xia, M.R.T. Rahman, Y. Shi, G. Le, Biochem. Biophys. Res. Commun. 458 (2015) 86–91.
[159]J.-A. Lee, S.K. Ha, E. Cho, I. Choi, Nutrients 7 (2015) 9650–9661.
[160]J.J. Johnson, M. Nihal, I.A. Siddiqui, C.O. Scarlett, H.H. Bailey, H. Mukhtar, N. Ahmad, Mol. Nutr. Food Res. 55 (2011) 1169–1176.
[161]N. Pannu, A. Bhatnagar, Inflammopharmacology 28 (2020) 719–735.
[162]K.R. Polley, N. Jenkins, P. O’Connor, K. McCully, Appl. Physiol. Nutr. Metab. 41 (2016) 26–32.
[163]W. Huang, Z. Chen, Q. Wang, M. Lin, S. Wu, Q. Yan, F. Wu, X. Yu, X. Xie, G. Li, Y. Xu, J. Pan, Metab. Brain Dis. 28 (2013) 585–595.
[164]Y. Xu, C. Zhang, F. Wu, X. Xu, G. Wang, M. Lin, Y. Yu, Y. An, J. Pan, Metab. Brain Dis. 31 (2016) 837–848.
[165]E.L. Wightman, J.L. Reay, C.F. Haskell, G. Williamson, T.P. Dew, D.O. Kennedy, Br. J. Nutr. 112 (2014) 203–213.
[166]Y. Zhu, B. Feng, S. He, Z. Su, G. Zheng, Phytomedicine 40 (2018) 20–26.
[167]A. Malvasi, I. Kosmas, O.A. Mynbaev, R. Sparic, S. Gustapane, M. Guido, A. Tinelli, Clin. Ter. 168 (2017) e240–e247.
© 2021 Raw Perfection Ltd. All Rights Reserved