PANAX QUINQUEFOLIUS COMMON NAME
American Ginseng
TOP BENEFITS OF PANAX QUINQUEFOLIUS
Enhances working memory and alertness*
Promotes calmness*
Supports cognitive function and performance*
WHAT IS PANAX QUINQUEFOLIUS?
Panax quinquefolius is commonly called American ginseng, because it is native to forested regions in North America. It is the same genus as Asian ginseng (Panax ginseng) and prized for many of the same reasons. Both American and Asian ginseng contain similar active constituents called ginsenosides. The ginsenosides are thought to be responsible for many of the adaptogenic (i.e., stress and fatigue support) and health-promoting properties associated with ginseng.[1] While there are many different ginsenosides, the most well characterized include Rb1, Rb2, Rg1, Rc, Rd, and Re. Cereboost™ is a clinically studied and standardized American ginseng root extract. In humans studies, Cereboost™ has enhanced working memory and alertness, while promoting calmness.
NEUROHACKER’S PANAX QUINQUEFOLIUS SOURCING
Cereboost™ has been used in human clinical studies, where it has enhanced alertness, working memory, and calmness.
Cereboost™ was granted the NutrAward 2010 for the Best New Ingredient of the year.
Cereboost™ is produced by Naturex, an innovator in nutraceutical products in Europe and the United States.
Cereboost™ is standardized for total ginsenoside content (10-12%), and several specific ginsenosides, including Rb1 (4-7%), Rb2 (0.2-1.5%), Rg1 (0.1-0.4%), Rc (0.5-3.5%), Rd (0.9-3.0%), and Re (0.4-3.5%).
Cereboost™ is non-GMO, gluten-free, and vegan.
Cereboost™is a trademark of Naturex.
PANAX QUINQUEFOLIUS DOSING PRINCIPLES AND RATIONALE
We consider Panax quinquefolius to be in the adaptogenic herb category; following hormetic dosing principles (see Neurohacker Dosing Principles) with a high likelihood of having a hormetic range (i.e., a dosing range below and above which results could be poorer). We have selected to dose this at an amount that is consistent with the studied amount in the human clinical studies for supporting working memory, alertness, and calmness.*
PANAX QUINQUEFOLIUS KEY MECHANISMS
Cognitive function
Supports attention [2]
Supports working memory [2,3]
Supports learning and memory [4–7]
Mood
Promotes calmness [2]
Supports mood [1,8,9]
Adaptogenic actions (i.e., stress resilience and anti-fatigue) [5]
Downregulates stress hormone levels / HPA-axis activation [1,8]
Brain function
Modulates cholinergic neurotransmission [1,4,5,10,11]
Downregulates acetylcholinesterase (AChE) activity [4]
Upregulates choline acetyltransferase (ChAT) expression [4]
Upregulates acetylcholine levels [4]
Modulates dopaminergic neurotransmission [12–15]
Modulates GABAergic neurotransmission [1,8]
Neuroprotective effects [1,4,5,8,10]
Regulates neural cytokine signaling [1,8,10,16]
Protects against glutamate neurotoxicity [10,17]
Supports neurite outgrowth, dendritic spine density, and synaptic plasticity [1,5–7]
Upregulates BDNF signaling [1,7,10,18]
Supports neurogenesis [1,10,18]
Antioxidant defenses
Upregulates antioxidant enzymes in the brain (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [8]
Replenishes glutathione (GSH) levels [8]Downregulates lipid peroxidation [8]
Cardiometabolic effects
Supports healthy cardiometabolic parameters [19–21]
Supports healthy blood glucose levels [22–24]
Supports healthy insulin sensitivity [25]
Supports fat metabolism [19]
Supports mitochondrial enzyme complex activities [8]
Gut microbiota
Regulates gut cytokine signaling [26–28]
Modulates gut microbiota composition [27,28]
Ergogenic effects
Supports high-intensity endurance performance [29,30]
Protects from exercise-induced muscle damage [29–31]
REFERENCES
[1] H.J. Kim, P. Kim, C.Y. Shin, J. Ginseng Res. 37 (2013) 8–29.
[2] A. Scholey, A. Ossoukhova, L. Owen, A. Ibarra, A. Pipingas, K. He, M. Roller, C. Stough, Psychopharmacology 212 (2010) 345–356.[3] A. Ossoukhova, L. Owen, K. Savage, M. Meyer, A. Ibarra, M. Roller, A. Pipingas, K. Wesnes, A. Scholey, Hum. Psychopharmacol. 30 (2015) 108–122.
[4] K. Shin, H. Guo, Y. Cha, Y.-H. Ban, D.W. Seo, Y. Choi, T.-S. Kim, S.-P. Lee, J.-C. Kim, E.-K. Choi, J.-M. Yon, Y.-B. Kim, Regul. Toxicol. Pharmacol. 78 (2016) 53–58.
[5] Y. Cheng, L.-H. Shen, J.-T. Zhang, Acta Pharmacol. Sin. 26 (2005) 143–149.
[6] I. Mook-Jung, H.S. Hong, J.H. Boo, K.H. Lee, S.H. Yun, M.Y. Cheong, I. Joo, K. Huh, M.W. Jung, J. Neurosci. Res. 63 (2001) 509–515.
[7] H. Zhao, Q. Li, X. Pei, Z. Zhang, R. Yang, J. Wang, Y. Li, Behav. Brain Res. 201 (2009) 311–317.
[8] P. Chanana, A. Kumar, Front. Neurosci. 10 (2016) 84.
[9] M. Chatterjee, P. Verma, G. Palit, Indian J. Exp. Biol. 48 (2010) 306–313.
[10] K. Radad, R. Moldzio, W.-D. Rausch, CNS Neurosci. Ther. 17 (2011) 761–768.
[11] C.G. Benishin, Neurochem. Int. 21 (1992) 1–5.
[12] G.-L. Wang, Y.-P. Wang, J.-Y. Zheng, L.-X. Zhang, Brain Res. 1699 (2018) 44–53.
[13] S.H. Lee, J. Hur, E.H. Lee, S.Y. Kim, Biomol. Ther. 20 (2012) 482–486.
[14] H.S. Kim, Y.T. Hong, K.W. Oh, Y.H. Seong, H.M. Rheu, D.H. Cho, S. Oh, W.K. Park, C.G. Jang, Gen. Pharmacol. 30 (1998) 783–789.
[15] H.S. Kim, K.S. Kim, K.W. Oh, Pharmacol. Biochem. Behav. 63 (1999) 407–412.
[16] C.F. Wu, X.L. Bi, J.Y. Yang, J.Y. Zhan, Y.X. Dong, J.H. Wang, J.M. Wang, R. Zhang, X. Li, Int. Immunopharmacol. 7 (2007) 313–320.
[17] Y.C. Kim, S.R. Kim, G.J. Markelonis, T.H. Oh, J. Neurosci. Res. 53 (1998) 426–432.
[18] L.-H. Shen, J.-T. Zhang, Neurol. Res. 26 (2004) 422–428.
[19] R.K. Singh, E. Lui, D. Wright, A. Taylor, M. Bakovic, Can. J. Physiol. Pharmacol. 95 (2017) 1046–1057.
[20] V. Vuksan, Z.Z. Xu, E. Jovanovski, A.L. Jenkins, U. Beljan-Zdravkovic, J.L. Sievenpiper, P. Mark Stavro, A. Zurbau, L. Duvnjak, M.Z.C. Li, Eur. J. Nutr. (2018).
[21] I. Mucalo, E. Jovanovski, D. Rahelić, V. Božikov, Z. Romić, V. Vuksan, J. Ethnopharmacol. 150 (2013) 148–153.
[22] V. Vuksan, M.P. Stavro, J.L. Sievenpiper, V.Y. Koo, E. Wong, U. Beljan-Zdravkovic, T. Francis, A.L. Jenkins, L.A. Leiter, R.G. Josse, Z. Xu, J. Am. Coll. Nutr. 19 (2000) 738–744.
[23] V. Vuksan, J.L. Sievenpiper, V.Y. Koo, T. Francis, U. Beljan-Zdravkovic, Z. Xu, E. Vidgen, Arch. Intern. Med. 160 (2000) 1009–1013.
[24] V. Vuksan, J.L. Sievenpiper, J. Wong, Z. Xu, U. Beljan-Zdravkovic, J.T. Arnason, V. Assinewe, M.P. Stavro, A.L. Jenkins, L.A. Leiter, T. Francis, Am. J. Clin. Nutr. 73 (2001) 753–758.
[25] L.R. De Souza, A.L. Jenkins, E. Jovanovski, D. Rahelić, V. Vuksan, J. Ethnopharmacol. 159 (2015) 55–61.
[26] C.-Z. Wang, H. Yao, C.-F. Zhang, L. Chen, J.-Y. Wan, W.-H. Huang, J. Zeng, Q.-H. Zhang, Z. Liu, J. Yuan, Y. Bi, C. Sava-Segal, W. Du, M. Xu, C.-S. Yuan, Int. Immunopharmacol. 64 (2018) 246–251.
[27] C.-Z. Wang, C. Yu, X.-D. Wen, L. Chen, C.-F. Zhang, T. Calway, Y. Qiu, Y. Wang, Z. Zhang, S. Anderson, Y. Wang, W. Jia, C.-S. Yuan, Cancer Prev. Res. 9 (2016) 803–811.
[28] C.-Z. Wang, W.-H. Huang, C.-F. Zhang, J.-Y. Wan, Y. Wang, C. Yu, S. Williams, T.-C. He, W. Du, M.W. Musch, E.B. Chang, C.-S. Yuan, Clin. Transl. Oncol. 20 (2018) 302–312.
[29] J. Wu, S. Saovieng, I.-S. Cheng, T. Liu, S. Hong, C.-Y. Lin, I.-C. Su, C.-Y. Huang, C.-H. Kuo, J. Ginseng Res. (2018).
[30] C.-W. Hou, S.-D. Lee, C.-L. Kao, I.-S. Cheng, Y.-N. Lin, S.-J. Chuang, C.-Y. Chen, J.L. Ivy, C.-Y. Huang, C.-H. Kuo, PLoS One 10 (2015) e0116387.
[31] M. Estaki, E.G. Noble, Appl. Physiol. Nutr. Metab. 40 (2015) 116–121.
© 2021 Raw Perfection Ltd. All Rights Reserved