Oops! Sorry!!


This site doesn't support Internet Explorer. Please use a modern browser like Chrome, Firefox or Edge.

NOOLVL™

NOOLVL COMMON NAME

Inositol-enhanced Bonded Arginine Silicate

TOP BENEFITS OF NOOLVL

Enhances processing speed and accuracy*

Supports executive function*

Boosts energy*

Promotes muscle performance*


WHAT IS NOOLVL?

nooLVLTM is comprised of two components: Bonded (inositol-stabilized) arginine silicate (Nitrosigine®) plus additional inositol. L-arginine has relatively low bioavailability (~20%) following an oral dose, so high doses are needed to significantly boost blood arginine levels.[1] Nitrosigine® and nooLVLTM have overcome this limitation by bonding the L-arginine to a silicate–inositol complex, which significantly enhances the bioavailability of L-arginine.[2–5] L-arginine is involved in promoting healthy circulation because it can be used for nitric oxide production. Blood flow to metabolically active tissues, like the brain and muscles, plays a big role in allowing these tissues to perform their functions at a high level. Bonded arginine silicate supports exercise performance and post-exercise recovery by promoting muscle blood flow.[6] It also supports brain performance, enhancing mental accuracy, focus, processing speed, and executive function.[5,7,8]

NEUROHACKER’S NOOLVLTM SOURCING

nooLVL has been clinically studied in humans: It has boosted cognitive performance and energy in eSports athletes.

nooLVL is an upgraded version of Nitrosigine®, an ingredient that supports blood arginine levels and nitric oxide production, enhanced energy, promoted focus and mental acuity, and supported better muscle response following exercise. 

nooLVL is a patented nutritional ingredient from Nutrition 21: It contains Nitrosigine® (l-arginine bonded to silica and inositol with affirmed GRAS) plus added inositol. 

nooLVL is gluten-free, vegan, and non-GMO.

nooLVL is a trademark of Nutrition 21, LLC.

NOOLVL KEY MECHANISMS

Vascular function

L-arginine is the substrate for vascular nitric oxide (NO) production by NO synthase (NOS)[9]

Upregulates endothelial NOS (eNOS) [silicate][10]

Upregulates the blood levels of arginine, silicon, and NO[4]

Supports healthy vascular function [2]

Supports healthy blood pressure [arginine][11] [inositol][12,13]


Brain function

Upregulates dopamine release[14–16].

Regulates dopamine transporter (DAT) activity[17–20]

Supports neurotransmitter signaling [inositol][21]


Cognitive function

Supports performance in complex cognitive tests requiring mental flexibility, processing speed and executive functioning[7]


Exercise performance (ergogenic effects)

Supports exercise performance [arginine][22]

Delays time to exhaustion [arginine][22]

Delays muscle fatigue [arginine][23]

Supports muscle blood flow after exercise[6]

Protects from muscle damage after exercise and during recovery[6]


REFERENCES

[1] O. Tangphao, M. Grossmann, S. Chalon, B.B. Hoffman, T.F. Blaschke, Br. J. Clin. Pharmacol. 47 (1999) 261–266.

[2] S.D. Proctor, S.E. Kelly, J.C. Russell, Diabetologia 48 (2005) 1925–1932.

[3] S.D. Proctor, S.E. Kelly, D.F. Vine, J.C. Russell, Metabolism 56 (2007) 1318–1325.

[4] D.S. Kalman, S. Feldman, A. Samson, D.R. Krieger, Clin. Pharmacol. 7 (2015) 103–109.

[5] J. Komorowski, S.P. Ojalvo, The FASEB Journal 30 (2016) 690.17–690.17.

[6] S. Rood-Ojalvo, D. Sandler, E. Veledar, J. Komorowski, J. Int. Soc. Sports Nutr. 12 (2015) P14.

[7] D. Kalman, P.D. Harvey, S. Perez Ojalvo, J. Komorowski, Nutrients 8 (2016).

[8] S. Sylla, S.P. Ojalvo, J. Komorowski, The FASEB Journal 32 (2018) 724.12–724.12.

[9] N.W. Rajapakse, D.L. Mattson, Clin. Exp. Pharmacol. Physiol. 36 (2009) 249–255.

[10] B. Buffoli, E. Foglio, E. Borsani, C. Exley, R. Rezzani, L.F. Rodella, Acta Histochem. 115 (2013) 418–424.

[11] J.-Y. Dong, L.-Q. Qin, Z. Zhang, Y. Zhao, J. Wang, F. Arigoni, W. Zhang, Am. Heart J. 162 (2011) 959–965.

[12] A. Santamaria, D. Giordano, F. Corrado, B. Pintaudi, M.L. Interdonato, G.D. Vieste, A.D. Benedetto, R. D’Anna, Climacteric 15 (2012) 490–495.

[13] D. Giordano, F. Corrado, A. Santamaria, S. Quattrone, B. Pintaudi, A. Di Benedetto, R. D’Anna, Menopause 18 (2011) 102–104.

[14] L.P. Liang, S. Kaufman, Brain Res. 800 (1998) 181–186.

[15] M.T. Silva, S. Rose, J.G. Hindmarsh, P. Jenner, C.D. Marsden, Neuroreport 9 (1998) 149–152.

[16] A. Strasser, R.M. McCarron, H. Ishii, D. Stanimirovic, M. Spatz, Neuroreport 5 (1994) 2298–2300.

[17] T.J. Volz, J.O. Schenk, Synapse 54 (2004) 173–182.

[18] J.P. Kiss, G. Zsilla, E.S. Vizi, Neurochem. Int. 45 (2004) 485–489.

[19] J.P. Kiss, E.C. Hennings, G. Zsilla, E.S. Vizi, Neurochem. Int. 34 (1999) 345–350.

[20] V. Chaparro-Huerta, C. Beas-Zárate, M.U. Guerrero, A. Feria-Velasco, Neurochem. Int. 31 (1997) 607–616.

[21] S.K. Fisher, J.E. Novak, B.W. Agranoff, J. Neurochem. 82 (2002) 736–754.

[22] H.U. Yavuz, H. Turnagol, A.H. Demirel, Biol. Sport 31 (2014) 187–191.

[23] A. Schaefer, F. Piquard, B. Geny, S. Doutreleau, E. Lampert, B. Mettauer, J. Lonsdorfer, Int. J. Sports Med. 23 (2002) 403–407.