WILD BLUEBERRY COMMON NAME
Lowbush Blueberry
TOP BENEFITS OF WILD BLUEBERRY
Supports cognitive function*
Supports vision*
Supports antioxidant defenses*
Supports cardiometabolic health*
WHAT IS WILD BLUEBERRY?
Blueberries are the fruit of a group of plant species belonging to the genus Vaccinium, section Cyanococcus. Blueberries contain anthocyanins that give the characteristic blue-purple color. They also contain other polyphenols and various phytochemicals. Commercial blueberries include wild (‘lowbush’) and cultivated (‘highbush’) varieties. Wild blueberries (Vaccinium angustifolium) are native to North American and are both smaller and have more intense color than the cultivated highbush blueberries. They also have higher anthocyanin and polyphenols content.[1,2] Most wild blueberries are harvested from native patches in Quebec, Nova Scotia, and Maine. Wild blueberry supplementation has primarily been studied for supporting cognitive function and brain health.[3,4]
NEUROHACKER’S WILD BLUEBERRY SOURCING
North American wild blueberry fruits are sourced from FutureCeuticals, a leader in growing, researching, and creating unique fruit and vegetable powders and extracts.
FutureCeuticals HiActives® North American Wild Blueberry Powder is standardized to contain no less than 1.5% Anthocyanins.
Grown in North America (USA and Canada)
Wild Blueberry Powder is GRAS, non-GMO, gluten-free, and vegan.
WILD BLUEBERRY DOSING PRINCIPLES AND RATIONALE
Wild blueberries are safely consumed as a food and have been clinically studied in humans at a variety of doses, ranging from as low as 100 mg/day to multiple grams. In general, standardized wild blueberry extracts have been dosed in lower amounts than non-standardized extracts.
WILD BLUEBERRY KEY MECHANISMS
Brain function
Supports memory in adults [3–5]
Supports memory and cognitive performance in children [6–9]
Supports mood [10]
Supports task-related brain activation [11]
Supports memory (animal studies) [12–15]
Supports dopaminergic neurotransmission [16–18]
Supports brain-derived neurotrophic factor (BDNF) [14,15,19–21]
Supports hippocampal IGF-1 levels [22]
Supports long-term potentiation (LTP) [23]
Supports neuroprotective functions [22,24,25]
Supports healthy brain aging [18,26,27]
Supports brain circulation [11]
Antioxidant defenses
Supports antioxidant enzymes in the brain (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]) [28–30]
Replenishes glutathione (GSH) [31]
Downregulates NADPH oxidase activity [32]
Supports free radical scavenging and antioxidant functions [28,33–35]
Cardiometabolic health
Supports cardiac function [36]
Supports vascular function [37]
Supports cardio-protective functions [38]
Supports endothelial nitric oxide (eNOS) activity [31]
Supports healthy blood pressure [3,28,39–41]
Downregulates LDL oxidation [35,39]
Supports healthy blood glucose levels [42]
Vision
Protects retinal photoreceptor cells from blue LED light-induced damage [43,44]
Protects against screen-induced ocular fatigue [45,46]
Exercise performance
Supports exercise performance [47]
Supports recovery from muscle damage [48]
Gut Microbiota
Supports the composition of the gut microbiota [49–56]
Supports microbial metabolism — short-chain fatty acid (SCFA) production [57]
Supports the intestinal epithelial barrier [52]
Healthy aging and longevity
Supports stem cell proliferation [58]
Prevents cell senescence [59]
Supports nuclear factor erythroid-2 related factor-2 (Nrf2) [29,30]
Supports DNA repair enzymes [29]
Protects against DNA damage [60–62]
Extends lifespan (Drosophila melanogaster) [63]
Immune System
Supports innate immune system [37,64–68]
Supports adaptive immune system [69]
Supports immune system communication [68,70,71]
Synergies
With grape extracts for support of cognitive function [72–75]
With grape extracts for blueberry/grape polyphenol bioavailability [76]
With green tea and soy protein for general immune health [77]
REFERENCES
[1]K.L. Wolfe, X. Kang, X. He, M. Dong, Q. Zhang, R.H. Liu, J. Agric. Food Chem. 56 (2008) 8418–8426.
[2]G. Borges, A. Degeneve, W. Mullen, A. Crozier, J. Agric. Food Chem. 58 (2010) 3901–3909.
[3]A.R. Whyte, N. Cheng, E. Fromentin, C.M. Williams, Nutrients 10 (2018).
[4]R. Krikorian, M.D. Shidler, T.A. Nash, W. Kalt, M.R. Vinqvist-Tymchuk, B. Shukitt-Hale, J.A. Joseph, J. Agric. Food Chem. 58 (2010) 3996–4000.
[5]R.K. McNamara, W. Kalt, M.D. Shidler, J. McDonald, S.S. Summer, A.L. Stein, A.N. Stover, R. Krikorian, Neurobiol. Aging 64 (2018) 147–156.
[6]A.R. Whyte, C.M. Williams, Nutrition 31 (2015) 531–534.
[7]A.R. Whyte, G. Schafer, C.M. Williams, Food Funct. 8 (2017) 4129–4138.
[8]K.L. Barfoot, G. May, D.J. Lamport, J. Ricketts, P.M. Riddell, C.M. Williams, Eur. J. Nutr. (2018).
[9]A.R. Whyte, G. Schafer, C.M. Williams, Eur. J. Nutr. 55 (2016) 2151–2162.
[10]S. Khalid, K.L. Barfoot, G. May, D.J. Lamport, S.A. Reynolds, C.M. Williams, Nutrients 9 (2017).
[11]J.L. Bowtell, Z. Aboo-Bakkar, M.E. Conway, A.-L.R. Adlam, J. Fulford, Appl. Physiol. Nutr. Metab. 42 (2017) 773–779.
[12]C. Andres-Lacueva, B. Shukitt-Hale, R.L. Galli, O. Jauregui, R.M. Lamuela-Raventos, J.A. Joseph, Nutr. Neurosci. 8 (2005) 111–120.
[13]P. Goyarzu, D.H. Malin, F.C. Lau, G. Taglialatela, W.D. Moon, R. Jennings, E. Moy, D. Moy, S. Lippold, B. Shukitt-Hale, J.A. Joseph, Nutr. Neurosci. 7 (2004) 75–83.
[14]C. Rendeiro, D. Vauzour, M. Rattray, P. Waffo-Téguo, J.M. Mérillon, L.T. Butler, C.M. Williams, J.P.E. Spencer, PLoS One 8 (2013) e63535.
[15]C.M. Williams, M.A. El Mohsen, D. Vauzour, C. Rendeiro, L.T. Butler, J.A. Ellis, M. Whiteman, J.P.E. Spencer, Free Radic. Biol. Med. 45 (2008) 295–305.
[16]I. Strömberg, C. Gemma, J. Vila, P.C. Bickford, Exp. Neurol. 196 (2005) 298–307.
[17]S.O. McGuire, C.E. Sortwell, B. Shukitt-Hale, J.A. Joseph, M.J. Hejna, T.J. Collier, Nutr. Neurosci. 9 (2006) 251–258.
[18]K.A. Youdim, B. Shukitt-Hale, A. Martin, H. Wang, N. Denisova, P.C. Bickford, J.A. Joseph, Nutr. Neurosci. 3 (2000) 383–397.
[19]C. Rendeiro, D. Vauzour, R.J. Kean, L.T. Butler, M. Rattray, J.P.E. Spencer, C.M. Williams, Psychopharmacology 223 (2012) 319–330.
[20]A.N. Carey, K.R. Gildawie, A. Rovnak, N. Thangthaeng, D.R. Fisher, B. Shukitt-Hale, Nutr. Neurosci. 22 (2019) 253–263.
[21]N. Xu, H. Meng, T. Liu, Y. Feng, Y. Qi, D. Zhang, H. Wang, Front. Pharmacol. 8 (2017) 853.
[22]B. Shukitt-Hale, F.C. Lau, A.N. Carey, R.L. Galli, E.L. Spangler, D.K. Ingram, J.A. Joseph, Nutr. Neurosci. 11 (2008) 172–182.
[23]S.J. Coultrap, P.C. Bickford, M.D. Browning, Age 30 (2008) 263–272.
[24]Q. Guo, Y.-N. Kim, B.-H. Lee, Nutr. Res. Pract. 11 (2017) 25–32.
[25]I. Traupe, M. Giacalone, J. Agrimi, M. Baroncini, A. Pomé, D. Fabiani, S. Danti, M.R. Timpano Sportiello, F. Di Sacco, V. Lionetti, F. Giunta, F. Forfori, Minerva Anestesiol. 84 (2018) 1352–1360.
[26]J.A. Joseph, B. Shukitt-Hale, N.A. Denisova, D. Bielinski, A. Martin, J.J. McEwen, P.C. Bickford, J. Neurosci. 19 (1999) 8114–8121.
[27]B. Shukitt-Hale, R.L. Galli, V. Meterko, A. Carey, D.F. Bielinski, T. McGhie, J.A. Joseph, Age 27 (2005) 49–57.
[28]C.M. Elks, S.D. Reed, N. Mariappan, B. Shukitt-Hale, J.A. Joseph, D.K. Ingram, J. Francis, PLoS One 6 (2011) e24028.
[29]K. Kavitha, P. Thiyagarajan, J. Rathna Nandhini, R. Mishra, S. Nagini, Biochimie 95 (2013) 1629–1639.
[30]Y.-P. Wang, M.-L. Cheng, B.-F. Zhang, M. Mu, J. Wu, World J. Gastroenterol. 16 (2010) 2657–2663.
[31]Y.E. Lopera, J. Fantinelli, L.F. González Arbeláez, B. Rojano, J.L. Ríos, G. Schinella, S. Mosca, Evid. Based. Complement. Alternat. Med. 2013 (2013) 516727.
[32]S.J. Gustafson, K.L. Dunlap, C.M. McGill, T.B. Kuhn, Oxid. Med. Cell. Longev. 2012 (2012) 768101.
[33]H. Wang, G. Cao, R.L. Prior, J. Agric. Food Chem. 45 (1997) 304–309.
[34]S.M. Bornsek, L. Ziberna, T. Polak, A. Vanzo, N.P. Ulrih, V. Abram, F. Tramer, S. Passamonti, Food Chem. 134 (2012) 1878–1884.
[35]B.C. Blacker, S.M. Snyder, D.L. Eggett, T.L. Parker, Br. J. Nutr. 109 (2013) 1670–1677.
[36]A. Cassidy, K.J. Mukamal, L. Liu, M. Franz, A.H. Eliassen, E.B. Rimm, Circulation 127 (2013) 188–196.
[37]A. Rodriguez-Mateos, G. Istas, L. Boschek, R.P. Feliciano, C.E. Mills, C. Boby, S. Gomez-Alonso, D. Milenkovic, C. Heiss, J. Gerontol. A Biol. Sci. Med. Sci. 74 (2019) 967–976.
[38]I. Ahmet, E. Spangler, B. Shukitt-Hale, M. Juhaszova, S.J. Sollott, J.A. Joseph, D.K. Ingram, M. Talan, PLoS One 4 (2009) e5954.
[39]A. Basu, M. Du, M.J. Leyva, K. Sanchez, N.M. Betts, M. Wu, C.E. Aston, T.J. Lyons, J. Nutr. 140 (2010) 1582–1587.
[40]S.A. Johnson, A. Figueroa, N. Navaei, A. Wong, R. Kalfon, L.T. Ormsbee, R.G. Feresin, M.L. Elam, S. Hooshmand, M.E. Payton, B.H. Arjmandi, J. Acad. Nutr. Diet. 115 (2015) 369–377.
[41]K.S. Shaughnessy, I.A. Boswall, A.P. Scanlan, K.T. Gottschall-Pass, M.I. Sweeney, Nutr. Res. 29 (2009) 130–138.
[42]L. Bell, D.J. Lamport, L.T. Butler, C.M. Williams, Food Funct. 8 (2017) 3104–3110.
[43]E. Ooe, Y. Kuse, T. Yako, T. Sogon, S. Nakamura, H. Hara, M. Shimazawa, Mol. Vis. 24 (2018) 621–632.
[44]B.-L. Lee, J.-H. Kang, H.-M. Kim, S.-H. Jeong, D.-S. Jang, Y.-P. Jang, S.-Y. Choung, Nutr. Res. 36 (2016) 1402–1414.
[45]C.Y. Park, N. Gu, C.-Y. Lim, J.-H. Oh, M. Chang, M. Kim, M.-Y. Rhee, BMC Complement. Altern. Med. 16 (2016) 296.
[46]Y. Ozawa, M. Kawashima, S. Inoue, E. Inagaki, A. Suzuki, E. Ooe, S. Kobayashi, K. Tsubota, J. Nutr. Health Aging 19 (2015) 548–554.
[47]C.H. Park, Y.S. Kwak, H.K. Seo, H.Y. Kim, Iran. J. Public Health 47 (2018) 27–32.
[48]Y. McLeay, M.J. Barnes, T. Mundel, S.M. Hurst, R.D. Hurst, S.R. Stannard, J. Int. Soc. Sports Nutr. 9 (2012) 19.
[49]S. Guglielmetti, D. Fracassetti, V. Taverniti, C. Del Bo’, S. Vendrame, D. Klimis-Zacas, S. Arioli, P. Riso, M. Porrini, J. Agric. Food Chem. 61 (2013) 8134–8140.
[50]S. Vendrame, S. Guglielmetti, P. Riso, S. Arioli, D. Klimis-Zacas, M. Porrini, J. Agric. Food Chem. 59 (2011) 12815–12820.
[51]X. Jiao, Y. Wang, Y. Lin, Y. Lang, E. Li, X. Zhang, Q. Zhang, Y. Feng, X. Meng, B. Li, J. Nutr. Biochem. 64 (2019) 88–100.
[52]Z. Yan, F. Yang, Z. Hong, S. Wang, Z. Jinjuan, B. Han, R. Xie, F. Leng, Q. Yang, Can J Gastroenterol Hepatol 2019 (2019) 5236149.
[53]J. Guo, X. Han, H. Tan, W. Huang, Y. You, J. Zhan, iScience 19 (2019) 676–690.
[54]S. Lee, K.I. Keirsey, R. Kirkland, Z.I. Grunewald, J.G. Fischer, C.B. de La Serre, J. Nutr. 148 (2018) 209–219.
[55]A. Lacombe, R.W. Li, D. Klimis-Zacas, A.S. Kristo, S. Tadepalli, E. Krauss, R. Young, V.C.H. Wu, PLoS One 8 (2013) e67497.
[56]U.D. Wankhade, Y. Zhong, O.P. Lazarenko, S.V. Chintapalli, B.D. Piccolo, J.-R. Chen, K. Shankar, Nutrients 11 (2019).
[57]C.J. Rebello, J. Burton, M. Heiman, F.L. Greenway, J. Diabetes Complications 29 (2015) 1272–1276.
[58]P.C. Bickford, J. Tan, R.D. Shytle, C.D. Sanberg, N. El-Badri, P.R. Sanberg, Stem Cells Dev. 15 (2006) 118–123.
[59]J. Zhang, O.P. Lazarenko, M.L. Blackburn, K. Shankar, T.M. Badger, M.J.J. Ronis, J.-R. Chen, PLoS One 6 (2011) e24486.
[60]P. Riso, D. Klimis-Zacas, C. Del Bo’, D. Martini, J. Campolo, S. Vendrame, P. Møller, S. Loft, R. De Maria, M. Porrini, Eur. J. Nutr. 52 (2013) 949–961.
[61]L.C. Wilms, A.W. Boots, V.C.J. de Boer, L.M. Maas, D.M.F.A. Pachen, R.W.H. Gottschalk, H.B. Ketelslegers, R.W.L. Godschalk, G.R.M.M. Haenen, F.J. van Schooten, J.C.S. Kleinjans, Carcinogenesis 28 (2007) 1800–1806.
[62]C. Del Bó, P. Riso, J. Campolo, P. Møller, S. Loft, D. Klimis-Zacas, A. Brambilla, A. Rizzolo, M. Porrini, Nutr. Res. 33 (2013) 220–227.
[63]C. Peng, Y. Zuo, K.M. Kwan, Y. Liang, K.Y. Ma, H.Y.E. Chan, Y. Huang, H. Yu, Z.-Y. Chen, Exp. Gerontol. 47 (2012) 170–178.
[64]A.R. Nair, N. Mariappan, A.J. Stull, J. Francis, Food Funct. 8 (2017) 4118–4128.
[65]E.D. Lewis, Z. Ren, J. DeFuria, M.S. Obin, S.N. Meydani, D. Wu, Br. J. Nutr. 119 (2018) 1393–1399.
[66]V. Taverniti, A. Dalla Via, M. Minuzzo, C. Del Bo’, P. Riso, H. Frøkiær, S. Guglielmetti, Food Funct. 8 (2017) 3601–3609.
[67]L.S. McAnulty, S.R. Collier, M.J. Landram, D.S. Whittaker, S.E. Isaacs, J.M. Klemka, S.L. Cheek, J.C. Arms, S.R. McAnulty, Nutr. Res. 34 (2014) 577–584.
[68]L.S. McAnulty, D.C. Nieman, C.L. Dumke, L.A. Shooter, D.A. Henson, A.C. Utter, G. Milne, S.R. McAnulty, Appl. Physiol. Nutr. Metab. 36 (2011) 976–984.
[69]Y.-P. Wang, M.-L. Cheng, B.-F. Zhang, M. Mu, M.-Y. Zhou, J. Wu, C.-X. Li, Hepatobiliary Pancreat. Dis. Int 9 (2010) 164–168.
[70]M. Pervin, M.A. Hasnat, J.-H. Lim, Y.-M. Lee, E.O. Kim, B.-H. Um, B.O. Lim, J. Nutr. Biochem. 28 (2016) 103–113.
[71]X. Sun, N. Liu, Z. Wu, Y. Feng, X. Meng, Molecules 20 (2015) 3841–3853.
[72]J. Bensalem, S. Dudonné, N. Etchamendy, H. Pellay, C. Amadieu, D. Gaudout, S. Dubreuil, M.-E. Paradis, S. Pomerleau, L. Capuron, C. Hudon, S. Layé, Y. Desjardins, V. Pallet, The Journals of Gerontology: Series A 74 (2019) 996–1007.
[73]J. Bensalem, S. Dudonné, D. Gaudout, L. Servant, F. Calon, Y. Desjardins, S. Layé, P. Lafenetre, V. Pallet, J. Nutr. Sci. 7 (2018) e19.
[74]A. Dal-Pan, S. Dudonné, P. Bourassa, M. Bourdoulous, C. Tremblay, Y. Desjardins, F. Calon, on behalf of the Neurophenols consortium, Journal of Alzheimer’s Disease 55 (2016) 115–135.
[75]P. Philip, P. Sagaspe, J. Taillard, C. Mandon, J. Constans, L. Pourtau, C. Pouchieu, D. Angelino, P. Mena, D. Martini, D. Del Rio, D. Vauzour, Antioxidants (Basel) 8 (2019).
[76]S. Dudonné, A. Dal-Pan, P. Dubé, T.V. Varin, F. Calon, Y. Desjardins, Food Funct. 7 (2016) 3421–3430.
[77]M. Ahmed, D.A. Henson, M.C. Sanderson, D.C. Nieman, N.D. Gillitt, M.A. Lila, Phytother. Res. 28 (2014) 1829–1836.
© 2021 Raw Perfection Ltd. All Rights Reserved